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Abstract—Asynchronous discussion forums are a key 
pedagogical feature of MOOCs and online degree programs, yet 
assessing the quality of student engagement at scale remains a 
persistent challenge. This paper explores the use of large 
language models (LLMs) to automatically detect cognitive 
presence and summarize cognitive engagement in online 
discussions. Grounded in the Community of Inquiry 
framework, we examine how LLMs can support instructors in 
understanding the depth of student thinking across large 
enrollments. We analyzed over 1,500 discussion posts from an 
introductory MOOC and a graduate-level online computer 
science course. Using LLaMA-based models, we implemented 
classification pipelines to categorize posts by cognitive presence 
phases (triggering event, exploration, integration, and 
resolution). We compared single-agent and multi-agent 
architectures where LLMs cross-validate or critique each 
other’s output to evaluate model accuracy, reliability, and 
interpretability. Our best-performing models achieved over 
92% agreement with human coders. In addition to classification, 
we employed LLMs to summarize the cognitive trajectory of 
entire discussion threads, surfacing patterns in student 
reasoning and critical thinking. Findings suggest that LLMs can 
provide scalable, accurate insights into students’ cognitive 
engagement, with both single- and multi-agent systems showing 
promise for enhancing model robustness. We discuss the 
pedagogical implications of integrating these tools into digital 
learning environments and outline key considerations for model 
generalizability. This study contributes to the growing field of 
AI-enhanced learning analytics, offering a practical framework 
for automated feedback in large-scale online education.  

Keywords—MOOC, online course, discussion forums, large 
language model, generative AI  

I. INTRODUCTION 
Asynchronous discussion forums offer a unique learning 

opportunity for online students to interact and construct 
knowledge with others. Previous research shows that 
participation in online discussions at a deep level through 
critical thinking, reflecting, and refining meaning has been 
found to enhance student learning [1], [2]. According to the 
community of inquiry (CoI) theory [3], a widely adopted 
framework to guide research in learning in collaborative 
online learning environments, meaningful knowledge 
construction can be fostered through the critical dimensions of 
teaching, social, and cognitive presence [2], [4] However, 
assessing cognitive presence poses persistent challenges in 

asynchronous discussion forums, especially within MOOCs 
and large-scale online programs where instructors cannot 
feasibly read thousands of posts. As a result, opportunities for 
timely feedback and intervention are often missed, which can 
negatively impact students’ engagement and overall quality of 
learning. In this study, we explore how large language models 
(LLMs) can be used to automatically summarize and detect 
cognitive presence in online discussions at scale.  

A. The Role of Cognitive Presence in Discussion Forums 
Cognitive presence, a critical dimension of the CoI 

framework, refers to the extent to which students engage in 
reflective thinking and critical inquiry [3]. Cognitive presence 
can be manifested in four developing phases, including: 
triggering event (phase 1), exploration of ideas (phase 2), 
integration of the ideas generated in the exploratory phase 
(phase 3), and resolution of the problem or issue (phase 4). 
Previous research has stressed the importance of facilitating 
cognitive presence to help students engage with critical 
thinking and deepen their inquiry process in online courses 
[4], [5].  

Empirical studies suggest that when students effectively 
engage in higher phases of cognitive presence such as 
integration and resolution, they are more likely to apply course 
concepts meaningfully and transfer knowledge to novel 
contexts [5], [6]. Additionally, online discussions 
characterized by high cognitive presence have been shown to 
foster active collaboration and promote peer-to-peer learning 
and collective knowledge construction [7], [8]. This is 
especially crucial in large-scale online learning environments 
like MOOCs in which direct instructor engagement is often 
limited [9]. However, measuring and supporting cognitive 
presence remains an ongoing challenge for educators and 
researchers who are seeking to improve the quality of online 
learning in large-enrollment courses. 
 

B. Measurement of Cognitive Presence 
Traditionally, cognitive presence has been measured 

through qualitative coding methods, which requires extensive 
manual analysis of discussion posts data. Such method 
becomes impractical as course sizes increase. To address this 
challenge, automated methods, including machine learning 
(ML) and natural language processing (NLP), have 
increasingly been employed to analyze students’ cognitive 



engagement due to their potential scalability [10], [11], [12], 
[13]. Researchers have explored supervised classification 
models that use ML algorithms to categorize discussion posts 
according to the four cognitive presence phases. For example, 
random forest classifiers have been frequently used to 
categorize cognitive presence phases based on linguistic 
features from course discussion forums [13], [14], [15]. 

Although these studies collectively highlight ML's 
potential to provide scalable insights into students' cognitive 
engagement and learning outcomes in digital educational 
contexts, results from traditional NLP models, which relied on 
using dictionary-based features, have shown varied 
performance and issues of overfitting and low 
generalizability. For example, Kovanović et al. [16] 
introduced a Support Vector Machine model that incorporated 
both n-gram and structural features, improving the accuracy 
to 58.4%. Building on this, Waters et al. [17] demonstrated 
that structural features play a key role by applying a 
Conditional Random Field model, which further increased 
performance to 64.2% accuracy. Kovanović et al. [18] further 
considered Random Forest classifier and consider class 
imbalance techniques for discussion forum classification, and 
the accuracy achieved with these transformations are 70.3%. 

C. Application and Potential of LLMs in Online Learning 
Data 
To address the limitations of traditional ML approaches 

for detecting cognitive presence, such as the need for 
extensive manual feature engineering and the lack of 
contextual interpretability, researchers have recently turned to 
transformer-based LLMs. These models including 
Bidirectional Encoder Representation Transformers (BERT) 
offer advanced natural language processing capabilities that 
allow for deeper and more flexible discourse analysis [10], 
[19], [20]. For example, Authors [10] leveraged BERT to 
classify cognitive presence with high accuracy with 92.5% 
across MOOC and graduate-level online discussions. 
Similarly, Hu et al., [20] developed fine-tuned multi-label 
BERT classifier, which demonstrated strong performance in 
classifying cognitive presence in MOOCs. However, such 
models often require task-specific tuning and do not provide 
transparent rationale for classifications. 

Guided by the LLM-Assisted Content Analysis (LACA) 
framework [21], Catellanos-Reyes [22] leveraged OpenAI’s 
GPT models to conduct automated content analysis based on 
the Practical Inquiry Model. By designing an AI-adapted CP 
codebook and testing a range of prompting techniques (e.g., 
one-shot, few-shot, chain-of-thought), the study demonstrated 
that LLMs could reliably classify student posts, particularly in 
the more abstract "Integration" phase of cognitive presence. 
Their findings highlight the potential of LLMs for cognitive 
presence classification and emphasize LACA's cost-efficiency 
in educational research. However, the authors also noted the 
need for considerable data literacy among researchers and 
educators to deploy LLM tools effectively. 

 

D. The Current Study 
Despite the promise of commercial LLMs such as GPT-4, 

widespread adoption in educational settings remains limited 
by their proprietary nature, high cost, and restricted 
transparency. As a result, open-source alternatives like the 
LLaMA family have emerged as attractive options for 
research and practice [23], [24]. Our study builds on this 
momentum by testing the extent to which the LLaMA-based 

models can achieve comparable accuracy in classifying 
cognitive presence in online discussion posts. 

Guided by the CoI framework, our exploratory study seeks 
to apply open-source AI models to assess students’ cognitive 
presence within discussion forums of large-enrollment online 
courses. Specifically, we investigate the effectiveness of 
different LLMs and fine-tuning techniques in accurately 
identifying the presence and development of critical thinking. 
Additionally, we explore the capacity of these models to offer 
contextualized insights that can support educators in 
enhancing practices in online learning and teaching. 

II. METHOD 

A. Participants and Settings 
Participants were enrolled in one of two online courses: an 

introductory computer programming MOOC (CS1301) and a 
graduate-level artificial intelligence course (CS6601). Both 
courses were offered by the same technology-focused public 
university in the U.S. and were taught by different instructors.  
CS1301 is a free, open-access course on the edX platform with 
no programming prerequisites and only basic arithmetic and 
high school algebra are recommended. This low-stakes course 
typically enrolls thousands of learners; for instance, we 
observed nearly 45,000 students registered during in Fall 
2017. On the other hand, CS6601 is a high-stakes, for-credit 
course within the Online Master’s in Computer Science 
program, and it is a much smaller class size than CS1301 (e.g., 
796 students in Spring 2020). It requires prior knowledge of 
college-level mathematical concepts and computer 
programming and algorithms. Students in both courses were 
invited to participate voluntarily in the discussion forums, and 
their participation was not counted toward the final grade. 

B. Data Sources 
The data source included a total of 505 randomly selected 

discussion threads collected from two online courses: 350 
threads from the CS1301 MOOC, collected during Fall 2017 
and Fall 2018 via edX and 155 threads from the CS6601 
graduate-level course, collected during Spring 2020 using the 
Piazza discussion forum. In total, these threads comprised 
2,341 individual discussion posts, with 848 from CS1301 and 
1,493 from CS6601. All discussion posts were anonymized 
prior to data analysis. 

C. Measures and Procedures 
All discussion posts were manually coded by researchers 

based on the four cognitive presence phases defined by the 
CoI framework [3] (see Table I). Two pairs of trained student 
research assistants conducted the coding analysis, following 
instructions and guidance provided by one of the authors. The 
coding process resulted in inter-rater reliability scores of up to 
95%, indicating a high level of agreement among coders.  

To prepare the dataset for modeling, the discussion threads 
data were split into training (80%), validation (10%), and test 
(10%) subsets. The data were stratified by course and 
cognitive presence labels to maintain distributional balance 
across the subsets. The training set included an additional 
explanation field that described the rationale behind each 
assigned label. This field was used to support the fine-tuning 
of LLMs by providing contextual guidance for supervised 
learning during the analysis process. 

TABLE I.  COGNITIVE PRESENCE PHASES AND SAMPLE QUOTES 



Cognitive 
Presence Phase Description (Sample Quotes) 

Non-cognitive 

Socializing comments (e.g.,Thank you!) 
Logistics, deadlines for exams or assignments, 
technical Q&As (e.g., can i download the 
smartbook?) 

Triggering Event 

Disagreement/conflict with prior knowledge (e.g., 
I’m so confused by this problem) 
Confusion or need for clarification about a problem 
(e.g., What do you mean by undersampling?) 

Exploration of 
Ideas 

Describing/diagnosing a problem (e.g., gah! Still 
having trouble with the k folds test; it looks like it’s 
breaking something in my confusion matrix) 
Sharing hypotheses (e.g., Are you printing the result 
instead of returning it?) 

Integration of 
Ideas 

Citing textbook references or other credible sources 
(e.g., In the instructions, it tells you to take the 
symbol itself from the instructions. You don't need 
to use unicode for this problem.) 
Proposing solutions (e.g., Try deleting your test 
lines from 45 onwards. If that fails, try resetting.) 

Resolution of 
Problem 

Confirmation or validation of ideas (e.g., Correct 
there are some nuances that can only be taken into 
account by actually implementing them) 
Elaboration on the proposed solution with 
explanation of why/how the solution works (e.g., 
You're on the right track, … you shouldn't print 
within the function … you will have to add them (in 
the right order) to your result string. Also, you 
should declare your return string before the loop 
start and then add to it.) 

D. Data Analysis 
a) Pre-processing vis Recursive Summarization: To 

address context length limitations and reduce irrelevant 
content, we employed a summarization preprocessing step. 
This approach preserves cognitively relevant discourse 
signals, such as reasoning steps and peer knowledge building, 
while reducing thread length for LLM processing. Each 
discussion thread was summarized before classification to 
distill the cognitively relevant content. We adopted a 
MapReduce summarization strategy, well-suited for handling 
lengthy inputs [25]. Initially introduced by LangChain, the 
MapReduce method involves two steps: the map step and the 
reduce step. In the map step, the discussion thread was split 
into token-bounded segments. Each segment was 
summarized independently using an LLM. In the reduce step, 
the resulting segment-level summaries were merged and 
recursively summarized until the final output fit within the 
target context window. This recursive collapsing approach 
enabled summarization of arbitrarily long discussion threads, 
often including extensive code snippets or error traces, while 
preserving key signals of student reasoning and engagement 
(see Table II for an example). 

TABLE II.  SAMPLE SUMMARY OUTPUT 

Summary Output Note 
The conversation revolves around the 
implementation of a machine learning algorithm, 
specifically the decision tree algorithm. The student 
asks about the splitting process, and the TA explains 
the step-by-step process of splitting the data column 
by column, starting with the first column, and 
calculating the Gini gain for each split. The student 
is interested in finding the column that gives the 
highest Gini gain. Additionally, the conversation 
touches on the logic for handling leaf nodes in the 
decision tree, clarifying that even if a split is made 
on a particular attribute value, the corresponding 
row should not be removed from the tree. 

The original 
thread included 
detailed 
decision tree 
splitting 
calculations, 
but the 
summary 
excludes them, 
while capturing 
all cognitive 
elements. 
 

b) Cognitive Presence Classification: The core task of 
this study was to automatically detect and classify cognitive 
presence in online discussion posts, as defined by the CoI 
framework. We approached this as two separate classification 
tasks. The first task is binary classification to determine 
whether a post contains cognitive presence or is non-
cognitive. The second task is multi-label classification to 
identify one or more of the cognitive presence phases. 

c) Few-Shot Prompting with RAG: Given the diversity 
of discussion styles and topics, we used Retrieval-
Augmented Generation (RAG) to dynamically select relevant 
few-shot examples [26]. We manually labeled a subset of 
discussions, each with a cognitive presence label and an 
explanation justifying the label. These labeled examples were 
embedded and indexed. At inference time, the system 
retrieved the top-k similar examples (k = 3) based on 
semantic similarity and included them in the prompt. 
Including explanations significantly improved model 
accuracy and interpretability by anchoring predictions in 
grounded reasoning. 

d) LLM Architecture: We tested multiple variants of 
the LLaMA family of models, including: LLaMA 2 (7B, 
13B), LLaMA 3 (8B, 70B), LLaMA 3.1 (8B, 70B), and 
LLaMA 3.3 (70B). Our single-agent architecture serves as a 
baseline for both binary and multilabel cognitive presence 
classification tasks. In this setup, a single LLM instance is 
responsible for producing predictions and justifications based 
on a prompt constructed using dynamic few-shot examples. 
In regard to the prompt design, the model receives a prompt 
that includes the input discussion (or its summary), along 
with k = 3 retrieved examples drawn from a manually 
annotated dataset. Each example includes both the label(s) 
and a natural language explanation. This dynamic prompt is 
generated via RAG  to ensure contextual relevance and 
diversity across different discussions. 

To improve robustness and reduce model hallucination or 
overconfidence, we implemented a generator-reflector multi-
agent framework based on reflective collaboration between 
two LLM instances [27]. The multi-agent setup consists of 
two roles: generator and reflector. The generator is identical 
to the single-agent model and produces an initial prediction 
and explanation based on the RAG-augmented prompt. On the 
other hand, the reflector assumes the role of a critical peer or 
instructor. It reviews the generator’s output and offers 
constructive critique, correction, or affirmation. In this 
framework, both the generator and reflector engage in a fixed-
loop interaction to ensure computational efficiency and 
reliable assessment. After each iteration, the generator revises 
its output in response to the reflector’s critique. This process 
continues until the reflector agrees with the output or until a 
maximum of three iterations is reached. 

III. RESULTS 
We evaluated the performance of both single-agent and 

multi-agent architectures on binary and multilabel cognitive 
presence classification tasks. Model performance was 
measured using weighted average F1-score, computed from 
classification outputs against human-coded ground truth. 

a) Single-Agent Classification Performance: For both 
the binary and multilabel tasks, we observed a consistent 
trend. Newer and larger models outperformed older and 
smaller ones, with accuracy and explanation quality 



improving notably with scale. This performance trend 
indicates that improvements in model architecture and pre-
training (e.g., between LLaMA 2 and LLaMA 3.3) have a 
measurable impact on the model’s ability to accurately 
identify and explain cognitive presence. The best-performing 
model results are reported in Table III. 

TABLE III.  SINGLE-AGENT CLASSIFICATION PERFORMANCE RESULTS 

Class 
Model Performance Metrics 

Precision Recall F1-Score Support 

Binary Classification (Llama 3.1 70B) 

True 0.86 0.86 0.86 29 

False 0.94 0.94 0.94 69 

Accuracy   0.92 98 

Multi-Label Classification (Llama 3.3 70B) 

Triggering 0.48 0.93 0.64 30 

Explorative 0.60 0.83 0.70 36 

Integrating 0.75 0.71 0.73 38 

Resolution 0.50 0.56 0.53 25 
Accuracy 
(Micro Avg)   0.66 129 

 
The binary classification task involved identifying whether 

a given discussion thread demonstrated evidence of cognitive 
presence (Table IV). The model achieved a weighted average 
F1-score of 0.92. The model performed particularly well on 
the False class (i.e., non-cognitive presence), with precision, 
recall, and F1-score all at 0.94, likely due in part to its larger 
representation in the test set (n = 69). While the True class 
(i.e., cognitive presence), which has fewer instances (n = 29), 
shows slightly lower but still robust metrics (precision, recall, 
and F1-score all at 0.86), the classifier maintains balanced 
performance across both categories. These results suggest 
that the model is both accurate and reliable for distinguishing 
between the two classes, with minimal evidence of class 
imbalance effects or systemic bias in prediction. 

TABLE IV.  SAMPLE BINARY CLASSIFICATION OUTPUT 

Model Input 
(CS6601) 

The student is struggling with a Gibbs sampling 
issue in their coursework, specifically with the 
calculation of P(A), P(B), and P(C) using the 14.12 
equation. They provided a link to their submission 
on Gradescope and asked the instructor to review 
their work. The TA responded by acknowledging 
the issue and indicating that it was resolved.  

Model Output 

{"present": "true", 
 "explanation": "The text shows cognitive presence 
through a "Trigger Event" and "Integrating Solution." 
The student encounters challenges with Gibbs 
sampling calculations and seeks help by sharing their 
submission. The TA acknowledges the issue and 
confirms its resolution, reflecting a collaborative 
effort that enhances the student's understanding."} 

 
The multilabel classification model achieved a weighted 

average F1-score of 0.66, with varying levels of model 
performance across the four cognitive presence categories 
(Table V). Notably, the model achieved high recall for the 
Triggering Event category (0.93), indicating its ability to 
identify most true instances, but at the cost of low precision 

(0.48), suggesting frequent false positives. In contrast, the 
Exploring Problem and Integrating Solutions categories 
exhibited relatively balanced performance, with F1-scores of 
0.70 and 0.73, respectively, reflecting the model’s capacity to 
both correctly identify and accurately predict these cognitive 
processes. The Resolution category proved the most 
challenging to classify, with the lowest F1-score (0.53), 
highlighting potential ambiguity or insufficient signal in the 
input features.  

TABLE V.  SAMPLE BINARY CLASSIFICATION OUTPUT 

Model Input 
(CS1301) 

The discussion revolves around a student's code 
submission, which functions correctly in Idle but 
fails in the grader. The student initially attributes 
this discrepancy to an error message for invalid 
values. Another student identifies that the error 
message should be lowercase ("invalid value") 
instead of uppercase ("Invalid value"). The student 
who had the issue then fixes this and confirms the 
code works. Another student notes that test code at 
the end of their file might have affected the grader, 
which was resolved by removing it. The 
conversation highlights the importance of case 
sensitivity and ensuring test code doesn't interfere 
with grading. 

Model Output 

{"triggering", “explorative”, “integrating”, 
“resolution”: "true", “true”, “true”, “true” 
 "explanation": "The text demonstrates cognitive 
presence through a 'Trigger Event' where the student 
encounters a discrepancy between their local 
environment and the grader. The 'Explorative 
Discussion' is evident as the student investigates the 
issue, with another student suggesting a potential 
solution related to case sensitivity. The 'Integrating 
Solution' is seen when the student applies the 
suggestion and confirms the code works. Finally, the 
'Resolution' is achieved when another student points 
out that test code at the end of the file might have 
been interfering with the grader, and this issue is 
resolved by removing the test code. The conversation 
actively engages with the academic content, 
promoting deeper understanding and problem-
solving."} 

 
The overall results suggest that the model is effective at 

capturing cognitive engagement, particularly in more 
frequent categories. However, it requires additional 
refinement to improve class discrimination, especially for 
less distinct categories such as Resolution. 

b) Muli-agent (Reflection-Based) Classification 
Performance: We evaluated the multi-agent generator–
reflector architecture exclusively on the binary classification 
task. This setup achieved a weighted average F1-score of 
0.91, which is close to the best single-agent score (0.92 from 
LLaMA 3.3 70B) (see Table VI). The "False" class (i.e., posts 
not exhibiting cognitive presence) was detected with higher 
precision (0.95) and F1-score (0.93) compared to the "True" 
class (i.e., posts exhibiting cognitive presence), which had a 
precision of 0.81 and F1-score of 0.85. The recall was 
relatively balanced across both classes, at 0.90 for "True" and 
0.91 for "False", indicating the model's consistent ability to 
retrieve relevant examples from both categories. These 
results suggest that while the model effectively identified 
posts that lacked cognitive presence, it adopted a more 
conservative approach when labeling posts as cognitively 
present likely to reduce the risk of false positives. 

TABLE VI.  MULTI-AGENT CLASSIFICATION PERFORMANCE RESULTS 



Class 
Model Performance Metrics 

Precision Recall F1-Score Support 

Binary Classification (Llama 3 70B) 

True 0.81 0.90 0.85 29 

False 0.95 0.91 0.93 69 

Accuracy   0.91 98 

 
As illustrated in Figure 1, the reflective loop facilitated 

useful refinements in cases of ambiguity and enabled better 
insight into the model's decision-making process, supporting 
more transparent and pedagogically interpretable output. 
While the overall F1-score was comparable, we anticipate 
that the multi-agent framework will be especially valuable for 
complex multi-label classification, which remains an area for 
future work. 
 

 
Fig. 1. Example Multi-Agent Output 

IV. DISCUSSION 
This study demonstrates the potential of LLMs in detecting 

and classifying cognitive presence in discussion forums, 
particularly within large-scale online learning environments 
such as MOOCs and online graduate programs. By exploring 
the effectiveness of both single-agent and multi-agent LLM 
architectures, we shed light on the applicability of AI tools in 
assessing and supporting learning processes that were 
previously difficult to observe at scale [12], [20], [28]. 
Specifically, our findings highlight three key contributions.  

First, we showcase that LLMs can offer a scalable solution 
to understanding how students engage cognitively in online 
discussions by efficiently and accurately processing and 
classifying complex text data. Our approach reduces the time 
and labor associated with analyzing discussion threads, 
allowing for near real-time feedback and timely pedagogical 
adjustments. This provides educators and researchers with a 
powerful tool for assessing learning engagement in large 
cohorts, where manual content analysis is often impractical. 

Also, the results demonstrate that LLMs can summarize 
and identify patterns of cognitive presence in a way that helps 
educators make sense of how students build knowledge and 
engage in critical thinking through collaborative discourse. 
This has important implications for course design and 
instructional interventions, especially in asynchronous online 
environments where instructor-student interaction is more 
limited [5], [6]. Additionally, this opens up new possibilities 
for adaptive learning systems that can respond dynamically 
to students’ evolving needs and engagement levels. 

Next, this study extends the growing body of research on 
AI in education by demonstrating that open-source LLMs, 
particularly the LLaMA family, can effectively classify 
cognitive presence in online discussion forums. We 
systematically evaluated multiple LLaMA variants and found 
a clear performance trend: newer and larger models, such as 
LLaMA 3.3 70B, achieved superior accuracy and explanation 
quality. This model reached a F1-score of 0.92 for binary 
classification and 0.66 for multilabel classification. 
Importantly, our results show that open-source LLMs can 
serve as affordable, scalable tools for educators and 
researchers. By relying on freely available models rather than 
commercial APIs, we lower the technical and financial 
barriers to applying AI in real-world educational settings. 
This work reveals the practical viability of open-source 
models for educational text classification tasks. 

Furthermore, we compared a multi-agent reflection-based 
framework against single-agent models and found that its F1-
score for the binary classification task was slightly lower 
(0.91). This raises questions about the specific conditions 
under which a multi-agent approach might offer distinct 
advantages. While we observed that multi-agent models 
could potentially excel in more ambiguous or nuanced phases 
of cognitive presence, the results suggest the need for further 
research to determine the most effective deployment 
scenarios for each architecture. 

Despite these contributions, our findings should be 
interpreted with caution due to several limitations. Most 
notably, our multi-label classification of the four phases of 
cognitive presence achieved an accuracy score of only 66%, 
which is lower than expected. Prior research has shown that 
detecting the higher phases of cognitive presence (i.e., 
integration and resolution) is inherently difficult due to their 
abstract, complex, and often implicit nature [4], [22]. This 
limitation reflects the broader challenge of aligning AI-
generated classifications with the nuanced interpretations 
made by human coders in contexts such as critical thinking 
and knowledge construction. These findings suggest a need 
for further refinement in prompt engineering strategies and 
for developing clearer and more operationalized definitions 
of cognitive presence phases to enhance model reliability and 
theoretical alignment. 

Another limitation of this study lies in the use of data 
combined from two distinct online courses, limiting 
generalizability of our findings. Moreover, such contextual 
differences likely influenced how cognitive presence was 
expressed and perceived, making it more difficult for the 
model to learn consistent patterns across datasets. These 
inconsistencies may have contributed to reduced 
classification accuracy, particularly in distinguishing 
between subtle phases of cognitive engagement. Future 
research should explore the impact of course-specific features 
on model performance and consider whether training separate 
models for individual courses or incorporating course-level 
context during model fine-tuning can improve robustness. 

V. CONCLUSION 
In conclusion, this study contributes to the advancement of 
digital education and MOOC learning research by illustrating 
how open-source LLMs can effectively support the large-
scale analysis of online discussion forum posts. By evaluating 

Input: The student realized the SmartBook
"exercises" are actually the "Practice" 

questions, not scattered content. They 
suggest clarifying this in the instructions.

The text shows cognitive presence 
through the student's confusion and 

resolution about the exercises, 
reflecting critical thinking and 

understanding of academic content.

The model mislabels logistical confusion 
as critical thinking. The student discusses 
navigation, not academic content. This is 

non-cognitive.

Generator

Reflector

The text focuses on navigating 
course materials, not on analyzing 

academic content. There's no 
engagement with theories, 

concepts, or problem-solving—only 
logistical clarification.



both single-agent and multi-agent LLM architectures, we 
demonstrate that these tools are capable of classifying and 
interpreting students’ cognitive presence or critical thinking 
with increasing accuracy. Our findings underscore the 
practical value of affordable AI solutions for instructional 
support in large, asynchronous learning environments. Yet, 
while LLMs offer timely insights into student thinking 
processes, this work points to the ongoing need for improving 
their interpretive capabilities and adapting them to diverse 
learning contexts, which becomes a critical direction for 
future research. 
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